Contribution of EEG signals to brain-machine interfaces
نویسندگان
چکیده
منابع مشابه
Integrating EEG and MEG signals to improve motor imagery classification in brain-computer interfaces
We propose a fusion approach that combines features from simultaneously recorded electroencephalographic (EEG) and magnetoencephalographic (MEG) signals to improve classification performances in motor imagery-based brain-computer interfaces (BCIs). We applied our approach to a group of 15 healthy subjects and found a significant classification performance enhancement as compared to standard sin...
متن کاملApplying evolution strategies to preprocessing EEG signals for brain-computer interfaces
An appropriate preprocessing of EEG signals is crucial to get high classification accuracy for Brain–Computer Interfaces (BCI). The raw EEG data are continuous signals in the timedomain that can be transformed by means of filters. Among them, spatial filters and selecting the most appropriate frequency-bands in the frequency domain are known to improve classification accuracy. However, because ...
متن کاملExtensions to Study Electrochemical Interfaces - A Contribution to the Theory of Ions
In the present study an alternative model allows the extension of the Debye-Hückel Theory (DHT) considering time dependence explicitly. From the Electro-Quasistatic approach (EQS) done in earlier studies time dependent potentials are suitable to describe several phenomena especially conducting media as well as the behaviour of charged particles in arbitrary solutions acting as electrolytes. Thi...
متن کاملInferring hand movement kinematics from MEG, EEG and intracranial EEG: From brain-machine interfaces to motor rehabilitation
Décoder la cinématique d’un mouvement de la main à partir d’enregistrements MEG et EEG: des interfaces cerveau-machine à la réhabilitation motrice K. Jerbi a,∗, J.R. Vidal a, J. Mattout a, E. Maby a, F. Lecaignard b, T. Ossandon a, C.M. Hamamé a, S.S. Dalal a,b, R. Bouet a, J.-P. Lachaux a, R.M. Leahy c, S. Baillet d, L. Garnero e, C. Delpuech a,b, O. Bertrand a a Inserm U1028, équipe dynamique...
متن کاملRelevance Vector Machine Applied to EEG Signals Classification
The electroencephalogram (EEG) is a complex and aperiodic time series, which is a sum over a very large number of neuronal membrane potentials. Despite the rapid advances of neuroimaging techniques, EEG recording continues playing an important role in both the diagnosis of neurological diseases and understanding of the psychological process. In order to extract relevant information of brain ele...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Neurophysiology
سال: 2018
ISSN: 0022-3077,1522-1598
DOI: 10.1152/jn.00730.2017